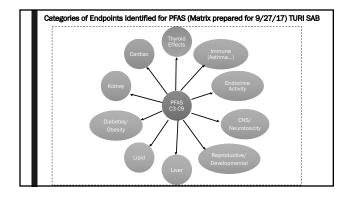
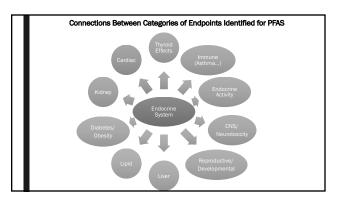
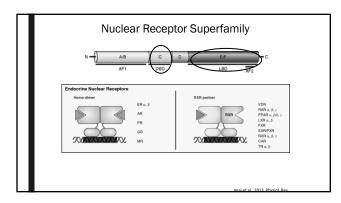
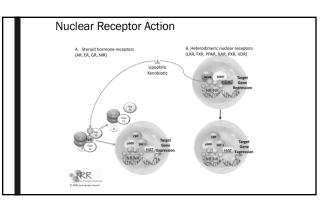
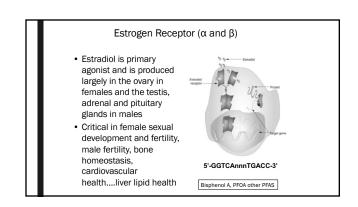

Outline

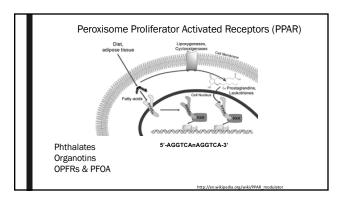

- Introduction to Challenges for Hazard Evaluation of Perfluorinated Alkyl Substances (PFAS)
- Low-Dose Toxicity Principles for Endocrine Active Chemicals
 Evidence for PFAS as EACs
- Endocrine Physiology and Communication Between Systems
- PFOS as thyroid hormone modulator
- PFOA/PFOS as effectors of lipid metabolism
- Possible Approach for PFAS Hazard Assessment

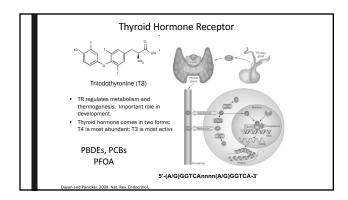


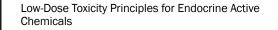

PFOA and P	a are Most Comprehensive				
FT OA anu F	103				
PFOA and/or PFOS Effec	ts in Animal and/or Epidemiology Studies				
Testicular cancer	Ovarian cancer				
Kidney cancer	Prostate cancer				
Ulcerative colitis	Obesity				
High cholesterol	Liver malfunction				
Pregnancy	Lower birth weight & size				
Thyroid disruption	Delayed puberty, decreased fertility, early menopause				
Hormonal changes	Reduced testosterone				
Immunotoxicity: interfere	ence with child vaccine response				
c I (1 I	oonse Increased hypersensitivity				

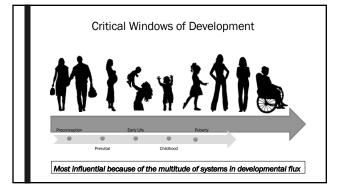

Yáble 7. PFOA N Category of Immune	lain Immune Efi Immune Outcomes	fects Summary Table Confidence Ratings in the Body of Evidence		Level of Evidence in		\frown
Response		Human	Animal	Human	Anima	Hazard Conclusion
Immunosuppression	Antibody response	Moderate	High	Moderate	High	Presumed to be an Imm Hazard to Humans
Hypersensitivity	Asthma and other hypersensitivity- related outcomes	Low	High	Low	High	<u>Presumed</u> to be an Immu Hazard to Humans

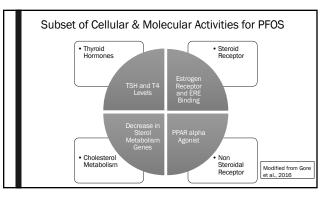












- Doses that are expected to occur in humans
- Responses observed in animal studies may not follow linear dose-response
 - relationships; Responses are specific for model, sex, developmental stage;
- Responses may be observed in off-spring and NOT in parent.

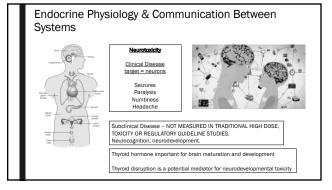
Modulate normal hormone function and small alterations can have lasting and significant effects on populations.

Selected PFAS (PFOS/PFOA) Endpoints and Endocrine Effects (by example)

Neurodevelopment Thyroid and brain – induction of hepatic microsomal levels of P450s that result in increased biliary excretion of thyroid hormores in response to multiple PFAS.

Lipid Dysregulation Liver - activation PPARα effecting lipid metabolism, cell growth. PFAAs may disrupt fatty acid binding

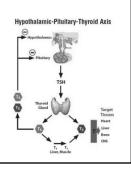
Obesity Adipocytes and the Brain – generating insulin resistance, glucose intolerance, dyspidemia

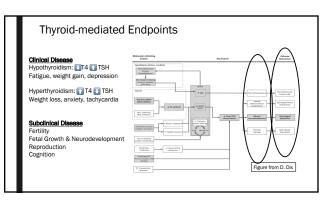

 Diabetes

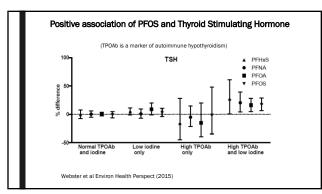
 PFOS directly affects the islet of Langerhans and increase/decrease normal insulin biosynthesis and release, generating hyper- or hypoglycemia. An excess of insulin signaling, as well as insulin resistance, can result in metabolic syndrome

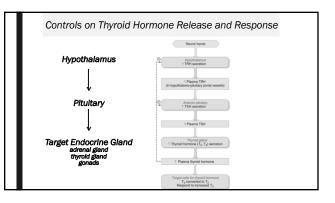
Excess Insulin

 Induces insulin resistance, glucose intolerance, fatty liver, and dyslipidemia, liver, and skeletal muscle

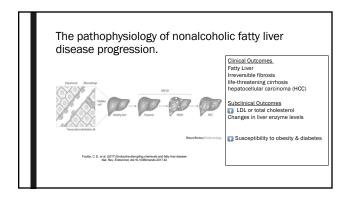

 Extracted from Gove et al., 2016; Kan et al., 2016; Kan et al., 2016;

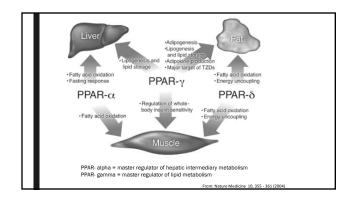


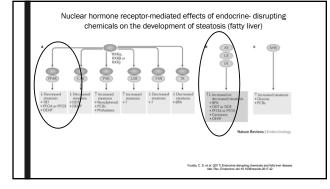

The Thyroid as Example

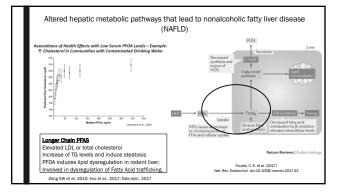

Thyroid Regulates:

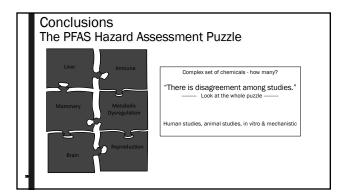
- Metabolism & lipid homeostasisRespiratory, cardiovascular,
- nervous, & reproductive systems (Choksi, 2003)
- Growth/neurodevelopment (de Escobar, 2004)

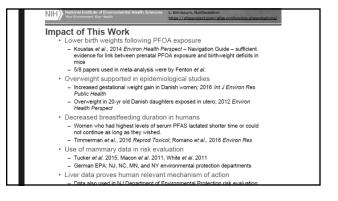


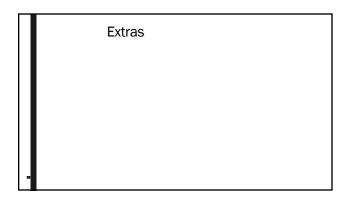


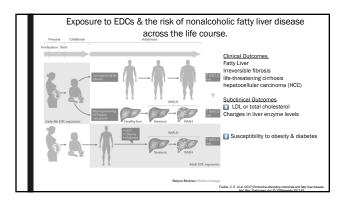


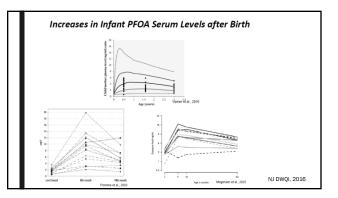

Are humans the same as mice when it comes to PPARs?


While PPARa agonists cause peroxisome proliferation and hepatocarcinogenesis in rodents, this does not occur in humans because of differences in both the PPAR itself and the genes that it regulates. BUT other effects DO occur...lipid dysregulation


Fibrate-based drugs used to control high triglyceride levels in blood.







Possible Approach for PFAS Hazard Evaluation

- Review all individual hazard studies;
- Identify endpoints but recognize connections between them;
- Use the molecular/cellular data as "glue-like" to support connections;
- Assess confidence in the literature
 Consider approach recommended by NTP (2015) & compiled by NAS (2017)

